Protective Devices

Residual Current Devices PFIM

- Residual current devices
- Shape compatible with and suitable for standard busbar connection to other devices of the P -series
- Twin-purpose terminal (lift/open-mouthed) above and below
- Busbar positioning optionally above or below
- Free terminal space despite installed busbar
- Universal tripping signal switch, also suitable for PLS., PKN., Z-A. can be mounted subsequently
- Auxiliary switch Z-HK can be mounted subsequently
- Contact position indicator red - green
- Delayed types suitable for being used with standard fluorescent tubes with or without electronical ballast ($30 \mathrm{~mA}-\mathrm{RCD}: 30$ units per phase conductor, $100 \mathrm{~mA}-\mathrm{RCD}: 90$ units per phase conductor)
Notes: Depending of the fluorescent lamp ballast manufacturer partly more possible. Symmetrical allocation of the fluorescent lamp ballasts on all phases favourably. Shifting references of the fluorescent lamp ballast manufacturer consider.
- The device functions irrespective of the position of installation
- Tripping is line voltage-independent. Consequently, the RCD is suitable for "fault current/residual current protection" and "additional protection" within the the meaning of the applicable installation rules
- Mains connection at either side
- The 4-pole device can also be used for 2- or 3-pole connection. See connection possibilities.
- The test key " T " must be pressed every 6 month. The system operator must be informed of this obligation and his responsibility in a way that can be proven (self-adhesive RCD-label enclosed). The test intervall of 6 month is valid for residential and similar applications. Under all other conditions (e.g. damply or dusty environments), it's recommended to test in shorter intervalls (e.g. monthly).
- Pressing the test key "T" serves the only purpose of function testing the residual current device (RCD). This test does not make earthing resistance measurement $\left(R_{E}\right)$, or proper checking of the earth conductor condition redundant, which must be performed separately.
- Type -A: Protects against special forms of residual pulsating DC which have have not been smoothed
- Type -G: High reliability against unwanted tripping. Compulsory for any circuit where personal injury or damage to property may occur in case of unwanted tripping (ÖVE/ÖNORM E 8001-1 § 12.1.6).
- Type -G/A: Additionally protects against special forms of residual pulsating DC which have not been smoothed.
Special types for X-ray application PFIM-...-R
- Type -R:To aviod unwanted tripping due to X-ray devices.
- Type -S: Selective residual current device sensitive to AC, type -S. Compulsory for systems with surge arresters downstream of the RCD (ÖVE/ÖNORM E 8001-1 § 12.1.5).
- Type -S/A: Additionally protects against special forms of residual pulsating pulsating DC which have not been smoothed.
- Type -U: Suitable for speed-controlled drives with frequency converters in household, trade, and industry.
Unwanted tripping is avoided thanks to a tripping characteristic designed particularly for frequency converters.
See also explanation "Frequency Converter-Proof RCDs - What for?" Application according to ÖVE/ÖNORM E 8001-1 and Decision EN 219 (1989), VDE 0100, SEV 1000.

Accessories:

Auxiliary switch for

subsequent installation to the left Tripping signal contact for subsequent installation to the right	Z-HK	248432
Remote control and automatic switching device	Z-NHK	248434
Compact enclosure	Z-FW/LP	248296
KLV-TC-2	276240	
Sealing cover set	KLV-TC-4	276241
Switching interlock	Z-RC/AK-2TE	285385
	IS/SPE-4TE	101062
		101911

Connection diagrams

Technical Data

Electrical

Design according to
Current test marks as printed onto the device
Tripping
Type G, R
Type S

Type U (only 30 mA) Type U (without 30 mA)

Rated voltage U_{n}
Rated tripping current $I_{\Delta n}$
Sensitivity
Rated insulation voltage U_{i}
Rated impulse withstand voltage $\mathrm{U}_{\mathrm{imp}}$
Rated short circuit strength $I_{n c}$
Maximum back-up fuse
$\mathrm{I}_{\mathrm{n}}=16 \mathrm{~A}$
$I_{n}=25 \mathrm{~A}$
$I_{n}=40 \mathrm{~A}$
$I_{n}=63 \mathrm{~A}$
$\mathrm{I}_{\mathrm{n}}=80 \mathrm{~A}$
$I_{n}=100 \mathrm{~A}$
Type PFIM-X:
$I_{n}=40 \mathrm{~A}$
$I_{n}=63 \mathrm{~A}$
$I_{n}=63 \mathrm{~A}$

IEC/EN 61008
Type G acc. to ÖVE E 8601
instantaneous
10 ms delay
40 ms delay -
with selective disconnecting function
10 ms delay
40 ms delay -
with selective disconnecting function
230/400 V, 50 Hz
$10,30,100,300,500 \mathrm{~mA}$
AC and pulsating DC
440 V
4 kV
10 kA
Overvoltage Short circuit
$10 \mathrm{AgG} / \mathrm{gL} \quad 16 \mathrm{AgG} / \mathrm{gL}$
$16 \mathrm{AgG} / \mathrm{gL} \quad 25 \mathrm{AgG} / \mathrm{gL}$
$25 \mathrm{AgG} / \mathrm{gL} \quad 40 \mathrm{AgG} / \mathrm{gL}$
$40 \mathrm{AgG} / \mathrm{gL} \quad 63 \mathrm{AgG} / \mathrm{gL}$
$50 \mathrm{AgG} / \mathrm{gL} \quad 80 \mathrm{AgG} / \mathrm{gL}$
63 A gG/gL
$100 \mathrm{gG} / \mathrm{gL}$
$40 \mathrm{AgG} / \mathrm{gL} \quad 40 \mathrm{AgG} / \mathrm{gL}$
$63 \mathrm{AgG} / \mathrm{gL} \quad 63 \mathrm{AgG} / \mathrm{gL}$

Rated breaking capacity I_{m} or
Rated fault breaking capacity $\mathrm{I}_{\Delta \mathrm{m}}$

$I_{n}=16-40 \mathrm{~A}$	500 A
$I_{n}=63 \mathrm{~A}$	630 A
$I_{n}=80 \mathrm{~A}$	800 A
$I_{n}=100 \mathrm{~A}$	$1,000 \mathrm{~A}$

Voltage range of test button 2-pole

196-264 V~
4 -pole $10,30 \mathrm{~mA}$
196-264 V~
4 -pole 100, 300, 500 mA
196-456 V~
Endurance electrical comp.
$\geq 4,000$ operating cycles
$\geq 20,000$ operating cycles

Mechanical

Frame size $\quad 45 \mathrm{~mm}$

Device height $\quad 80 \mathrm{~mm}$
Device width $\quad 35 \mathrm{~mm}(2 \mathrm{MU})$,
Mounting

Degree of protection, built-in
Deg. of prot. in moisture-proof encl.
Upper and lower terminals
Terminal protection
Terminal capacity
Busbar thickness
Tripping temperature
Storage- and transport temperature
Resistance to climatic conditions

70 mm (4MU)
quick fastening with
2 lock-in positions on
DIN rail IEC/EN 60715 IP40
IP54
open mouthed/lift terminals finger and hand touch safe, BGV A3, ÖVE-EN 6
$1.5-35 \mathrm{~mm}^{2}$ single wire $2 \times 16 \mathrm{~mm}^{2}$ multi wire $0.8-2 \mathrm{~mm}$
$-25^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}$
$-35^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ $25-55^{\circ} \mathrm{C} / 90-95 \%$ relative humidity acc. to IEC 60068-2

Protective Devices

Correct connection

2-pole
30, 100, 300, 500mA Types:

4-pole

10, 30mA Types:

100, 300, 500mA Types:

Influence of the ambient temperature to the maximum continuous current (A)

	$\mathbf{1 6 A}$		$\mathbf{2 5 A}$		$\mathbf{4 0 A}$		$\mathbf{6 3 A}$	$\mathbf{8 0 A}$	$\mathbf{1 0 0 \boldsymbol { A }}$		
Ambient temperature	$\mathbf{2 p}$	$\mathbf{4 p}$	$\mathbf{2 p}$								
$\mathbf{4 p}$											
$\mathbf{4 0}^{\circ}$	16	16	25	25	40	40	63	63	80	80	100
$\mathbf{4 5}^{\circ}$	14	14	21	22	37	37	59	59	76	76	95
$\mathbf{5 0}^{\circ}$	11	11	18	19	33	34	55	55	72	72	90
$\mathbf{5 5}^{\circ}$	9	9	14	16	30	31	50	50	68	68	85
$\mathbf{6 0}^{\circ}$	$\left.-{ }^{*}\right)$	-	-	-	26	27	45	45	64	64	80

Annotation: It has to be ensured that the values in the table are not exceeded and the back-up fuse/thermal protection works properly
*) not applicable

